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Fromm’s second-order scheme for integrating the linear convection equation is made 
monotonic through the inclusion of nonlinear feedback terms. Care is taken to keep the 
scheme in conservation form. When applied to a quadratic conservation law, the scheme 
notably yields a monotonic shock profile, with a width of only 13 mesh. 

I. INTRODUCTION 

This paper is a sequel to Van Leer [ 11. Likewise, it deals with the design of mono- 
tonic difference schemes, of second-order accuracy, for integrating the nonlinear 
conservation law 

af (4 g+==o. 
In [I] it was shown that the scheme of Lax and Wendroff [2] can be made monotonic 
only at the expense of the conservation form. There is not enough play in the Lax- 
Wendroff scheme to achieve monotonicity and conservation together. The simplest 
scheme that does offer enough play is the “zero-average-phase-error method” of 
Fromm [3]. This scheme will be the present subject. 

Fromm’s scheme can be regarded as the average of two differently centered 
second-order schemes, one of which is the usual Lax-Wendroff scheme. When 
each of the composing schemes is made monotonic, in the way of [l], the average 
scheme will become monotonic too. If due care is taken, the average scheme may 
even be conservative, although the composing schemes no longer are. This is 
demonstrated in Section 2. 

Section 3 describes a comparative numerical experiment, in which a monotonic 
version of Fromm’s scheme competes with the original version and with the 
monotonic first-order scheme of Godunov [4]. 
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As in [l], the monotonicity analysis of Section 2 is based on the linear convection 
equation 

g+ag=o, (2) 

where a is a positive constant. For the sake of brevity, an algebraic line of reasoning 
is followed, rather than the geometric line followed in [l]. The notation, sum- 
marized in Table I, is essentially the same as in [ 11. The only change is in the choice 
of the so-called “smoothness monitor”, a quantity that, in some way, measures the 
rate of change of dw across a nodal point. The expression 

L-i = 2Ai-l/2w 
Ai+l,sw - &,,,w ’ 

chosen as the monitor for the particular purpose of [l], has been replaced by the 
simpler expression 

&+!L$. 
e l/2 

If di-rlaw and &+1/S w  both vanish, 9i is set equal to one. 

TABLE I 

Notation Used in the Grid 

(41 

Symbol Definition 

x0 

Xi 
to 

tl 

Wi 
WO 

A tw 

4+1/zw 

Wi+1/2 

h 

h 

cl 

abcissa where the time difference of w is evaluated 

x0 + iAx 

initial time level 

to + At, final time level 

w(P, xi), initial value of w in xi 

w(tl, x0), final value of w in x0 

w” - wg 

Wi+l. - wi 

&(w* + %a) 

dl+,~,w/di-l~aw, smoothness monitor 

&/Ax, mesh ratio 

ha, Courant number 
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2. FROMM'S SCHEME MADE MONOTONIC 

Fromm’s scheme for Eq. (2) is the simplest upstream-centered scheme of second- 
order accuracy. The upstream centering shows best when the scheme is written 
as follows: 

A;w = --aA-,,,w - $ (1 - o)(A,,,w - &,zw); (5) 

the subscript F stands for “Fromm”. Consider further only those values of u for 
which this scheme is stable, namely 

O<o<l. (6) 

Note that both members of (5) are perfect differences, hence the scheme is con- 
servative. 

Fromm’s scheme may be regarded as the average of the following schemes: 

A:w = -aA-,,,w - + (1 - u)(A,,,w - A-,,,w), (7) 

A;w = --aA-,,,w - c(l - u)(A-~,~w - A--3,2w). (8) 

Both are stable when (5) is stable. Scheme (7) is the scheme of Lax and Wendroff, 
giving Atw in terms of A,,,w and A-,,,w with second-order accurancy. Scheme (8) 
also gives Atw with second-order accuracy, but in terms of A-,,,w and A-,,,w. 
The subscripts r and I stand for “right” and “left” and refer to the choice of the 
spatial differences in these schemes. 

In the present context, a scheme is called monotonic if it yields a value of Wo 
that lies between w,, and wP1 . In formula: 

A tw 
’ < - A-,,,w d I. (9) 

If both schemes (7) and (8) are modified so that they satisfy condition (9), their 
average will also satisfy (9). In other words, making both (7) and (8) monotonic 
is one way to make scheme (5) monotonic. As shown below, it is also the only way 
in which the conservation form may be maintained. 

In making scheme (7) monotonic, the quantity that matters is the ratio of A,,,w 
and A-,,,w. This ratio is the local value of the smoothness monitor 6, defined in 



364 BRAM VAN LEER 

Eq. (4). In order to achieve monotonicity, it must be fed back into the coefficients 
of the scheme. The monotonic version of (7), derived in [l], has the form 

A&w = -uA-,,,w - : (1 - a){1 - Q(i$,)}(d,,,w - d-,,,w); (10) 

the subscript m stands for “monotonic”. The function Q(@ must lie between 
certain limits in order to make scheme (10) satisfy condition (9) for any value of 
9,) and for any value of u in the stability range (6). To keep scheme (10) quadratic 
in u, Q is assumed to be independent of u. 

Scheme (8) is modified in the same way as scheme (7). The monotonic version 
reads 

A;,w = -uA -l/2w - t(l - a){1 - R(8-J}(A-,,,w - A-,,,w). (11) 

Condition (9) is satisfied by properly choosing the function @a,); assume that 
R, too, is independent of u. 

It is seen that the schemes (10) and (11) are not conservative: the nonlinear terms 
needed for monotonicity are no perfect differences. However, the average of (10) 
and (11) may again be conservative, if only we can find a function S(a) with the 
following property: 

inserting &(a,-,) = S(@=9,) makes scheme (10) monotonic, while 

inserting R(8-,) = --S($=&-,) makes scheme (11) monotonic. 

Using such a function, the average scheme becomes 

Ailnw = - aA_,,,w - $ (1 - u)(A,,,w - A-,,,w) 

+ + (1 - 4q&,@,,,w - A-,,,@ - W-,W,,,w - A-,,&I- (12) 

As desired, the terms between curly brackets form a perfect difference. This 
difference is of the third order, hence does not disturb the second-order accuracy 
achieved in the linear terms of scheme (12). 

A linear stability analysis of scheme (12) yields the same stability condition as 
for scheme (5), provided that 

S2(i+) d 1 + O(Ax). (13) 
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This restriction is too weak to be useful in determining S(a). A stronger restriction 
can be obtained as follows. Assume, for a moment, that d-,,,w = &w, or 

6-1 = l/& . (14) 

Fromm’s original scheme (5) then reduces to the scheme of Godunov: 

o;w = -uA-I,2w, (15) 

which is monotonic. In this case, the S-terms in Eq. (12) serve no purpose, and 
their net contribution therefore must vanish. It follows that 

S(8-,) = --s@,) for a-, = l/9,, (16) 

or, in general, 

W@ = -Ls(l9). (17) 

This kind of anti-symmetry immediately fixes the following function-values: 

S(1) = S(-1) = 0. (18) 

Eq. (18) can be further interpreted. From the definition of 8 it follows that, in 
general, 

6 = 1 + 0(4X). (19 

In those points where, in the exact solution of Eq. (2), w  reaches a local extremum, 
(19) makes way for 

9 = ---I + O(Ax). (20) 

Thus, Eq. (18) essentially says that 

S(8) = O(Ax), (21) 

which, by a large margin, renders stability to scheme (12). 
Further information on S(a) follows from applying condition (9) to both schemes 

(10) and (1 l), with Q(&,) and R(zY-,) replaced by S&J and --S(r!J-,). When CJ runs 
from 0 to 1, the key quantity ---dtw/~-,,,w runs from 0 to 1 in all schemes con- 
sidered. It will not go beyond these bounds provided that 

a 
( 

Atw 
ao --G 3o ) for o=O,l. 

5S1P4/4-4 
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Imposing condition (22) on schemes (10) and (1 l), for arbitrary values of 19~ and 
9-, , yields the following restrictions on the choice of S(8): 

I{1 - S(W(z(r - 1)i < 2, (23) 

I(1 + ww (1 - +)I d 2. 

Imposing condition (22) merely on scheme (12) leads to 

(24) 

This, however, splits into (23) and (24), since it must hold for any combination of 
values of 9, and 8-r . In order words: the monotonicity of both scheme (10) and 
scheme (11) indeed is necessary for the monotonicity of scheme (12). 

--6 -5 -4 -3 -2 -1 0 1 2 3 4 5 96 

FIG. 1. Graphic representation of the conditions on S(8). 

From (23) it follows that the graph of S(0) must lie in the domain enclosed by 
the graphs of the functions (8 - 3)/(8 - 1) and (8 + 1)/(8 - l), while (24) implies 
that the graph of S(8) must lie in the domain enclosed by the graphs of the 
functions -(38 - 1)/(8 - 1) and (8 + 1)/(8 - 1). These domains and their 
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cross-section are depicted in Fig. 1. For 8 < 0, S(8) appears to be uniquely 
determined : 

These values are indicated in Fig. 1 by a heavy solid line; note that they agree 
with (17). For 8 > 0, the heavy solid line is continued by minimizing /S(8)/ : 

36 - 1 
w  = - 8 _ 1 for 0 < 8 < 4, 

for Q < 6 < 3, (27) 

for 6 > 3, 

again in agreement with (17). The S-values in (26) and (27) are the same as the 
Q-values derived for scheme (10) in [l], at least for 18 1 2 1. For 16 ( < 1, Q could 
be set equal to zero since condition (17) did not arise. 

A not-so-tight choice of S(8), permitted by (17), is 

S(8) = s for 9 > 0, 

indicated by the heavy broken line in Fig. 1. Combining it with (26) yields the simple 
expression 

S(f)) = 1 lY 1 - l 
Ial+ for any value of 9. 

This choice of S may be the safer one to be used in a scheme for a nonlinear 
conservation law. From a computational viewpoint, expression (29) certainly is 
the most convenient choice, since it does not really require the evaluation of 8. 
In practice, S will be evaluated as 

IA a+1/2w I - I 442~ I 
‘(“) = I Aj+l,2w I + I Ai+w I * (30) 

The denominator is calculated first; if it vanishes, S is set equal to zero. 

3. A NUMERICAL EXPERIMENT 

For the nonlinear conservation law (l), a is defined as 

a(w) = 9&Q ; (31) 
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assume that a(w) is positive. In reformulating scheme (12) for Eq. (l), adi+l,zw is 
replaced by M,+,,J, and a(1 - a) di+Iia~ by A(1 - hai+rle) d,+,,,f. Scheme (12) 
then changes into 

As indicated, in this formula are also embedded the nonlinear versions of Fromm’s 
original scheme (5) and Godunov’s scheme (15). 

In a numerical experiment, the three schemes of Eq. (32) were applied to the 
nonlinear conservation law 

g+zp=o. (33) 

The following initial values were prescribed: 

wi = w- for i < 25, 

ws = B(w- + w+) for i = 26, 

Wf = w+ for i > 27, 
(34) 

where either w- = +, w, = 1, or w- = 1, w+ = 4. With w- < IV,, these data 
represent an expansion wave; with w- > w+, a compression wave. Both waves 
will move at the speed 

w  = $(w- + w,). (3% 

The mesh ratio was chosen according to 

hW=$. (36) 

Due to this very choice, the waves produced by the schemes considered all moved 
exactly one space mesh in two time steps, right from the start. Moreover, the form 
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of the waves remained exactly anti-symmetric around the point where w  = W. 
These phenomena are related to the fact that the schemes, when applied to the 
linear Eq. (2), produce no dispersive errors for 0 = Q. 

Figure 2 shows the results of the three schemes for the expansion wave at 
t = 24 At, while Fig. 3 shows an overlay of the results for the shock waves at 
t = 21 At and 24 At. The results of the monotonic version of Fromm’s scheme 
were obtained with the S-values of Eq. (28). 

04 1 ” I”’ I ’ 1 ” 1 ‘1 “1’ 1 ’ I ’ 30 35 40 45 x;Bx 50 

FIG. 2. Numerical representation of an expansion wave by the schemes of Godunov (curve G), 
Fromm (curve F) and Fromm, monotonic (curve Fm). Beyond the tack marks, the numerical 
results differ less than 0.0005 from the exact solution. 

The figures clearly demonstrate the superiority of the monotonic version of 
Fromm’s scheme. The results of this scheme have the acuity of the results of the 
original scheme of Fromm, while lacking the ringing generated by the latter scheme. 
This improvement involves an increase in computing time of only about a factor 
4/3. The improvement over Godunov’s scheme is even more obvious, but involves 
an increase in computing time of about a factor 4. On the other hand, Godunov’s 
scheme can reach the accuracy of the monotonic version of Fromm’s scheme only 
through a reduction of the mesh width of about a factor 3 in the case of Fig. 2, 
and about a factor 2 in the case of Fig. 3. This leads to an increase in computing 
time of a factor 9 and a factor 4, respectively. Thus, for a given accuracy, Godunov’s 
scheme requires at least as much computing time as the monotonic version of 
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FIG. 3. Same as Fig. 2, but for a compression wave. 

Fromm’s scheme. This makes the latter scheme the most economic one of the 
schemes tested. 

In the next paper of the present series, I shall discuss the application of Fromm’s 
scheme and its monotonic version to the Lagrangean flow equations. 
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